

Part no: 5L Lecturer: prof. Ing. Robert Grega, PhD.

Kinematics of crank mechanism

A crankshaft is the mechanical part able to perform conversion between rotating and reciprocating motion.

TECHNICAL UNIVERSITY OF KOŠICE Faculty of Mechanical Engineering

AUTOMOBILE DESIGN

Part no: 5L

Lecturer: prof. Ing. Robert Grega, PhD.

Calculation:

x - distance of piston position

r- radius of crankshaft

1 - length of connecting rod

α - angel of rotation crankshaft

 $\lambda = r/l$

Then:

Displacement - x:

$$x = (l+r) - r \cdot \cos\alpha - l \cdot \cos\beta$$
$$x = r \cdot \left[1 - \cos\alpha + \frac{1}{\lambda}(1 - \cos\beta)\right]$$
$$\cos\beta = \sqrt{1 - \sin^2\beta}$$

from $\triangle ADB$ and $\triangle BDC \rightarrow l. \sin \beta = r. \sin \alpha \rightarrow \sin \beta$ = $\lambda . \sin \alpha$

$$\beta = \arcsin(\lambda.\sin\alpha)$$

$$\cos\beta = \sqrt{1 - \lambda^2.\sin^2\alpha}$$

$$x = r.\left[1 - \cos\alpha + \frac{1}{\lambda}\left(1 - \sqrt{1 - \lambda^2.\sin^2\alpha}\right)\right]$$

$$x \cong r.\left[1 - \cos\alpha + \frac{1}{2}\lambda.\sin^2\alpha\right]$$

Piston speed (velocity) - c:

Average piston speed: $c_s = 2z.n$

z - stroke

n- revolution of crankshaft

Current Piston speed:

$$c = \frac{dx}{dt} \Rightarrow c = r. \omega. \sin\alpha \left[1 + \frac{\lambda. \cos\alpha}{\sqrt{1 - \lambda^2. \sin^2\alpha}}\right]$$

Simply:

$$c \cong r.\omega.(\sin\alpha + \lambda.\sin\alpha.\cos\alpha)$$

or

$$c \cong r. \omega. (sin\alpha + \frac{\lambda}{2}. sin2\alpha)$$

TECHNICAL UNIVERSITY OF KOŠICE Faculty of Mechanical Engineering

AUTOMOBILE DESIGN

Part no: **5**L

Lecturer: prof. Ing. Robert Grega, PhD.

Maximal speed of piston:

$$c = r.\,\omega.\sqrt{1 + \lambda^2}$$

Speed graph:

Crankshaft rotation angle

(°)

Acceleration - a:

if ω =const.

$$a = \frac{dx^2}{dt^2} \Longrightarrow a \simeq r.\omega^2.(\cos\alpha + \lambda.\cos2\alpha)$$

Graph of acceleration:

Part no: **5L** Lecturer: prof. Ing. Robert Grega, PhD.

Dynamics of crank mechanism

1. Substitution of mass

Each part of the crank mechanism will have a weight (mass).

Mass - mA.

In point "A" we will concentration mass of reciprocating motion parts (piston, piston rings, wrist pin, segment of connecting rod)

Mace - mp

In point "B" we will concentration mass of rotating motion parts (segment of crankshaft, crankpin bearing journal, segment of connecting rod)

Reduction of mass of connection rod:

$$m_o = m_{op} + m_{or}$$

mo- total mass of conection rod

Part no: **5L** Lecturer: prof. Ing. Robert Grega, PhD.

 m_{op} - segment of connecting rod reduced to the motion mass m_{or} - segment of connecting rod reduced to rotating mass

$$m_{op}$$
 .b= m_{or} . a $m_{or} = m_o$.b/l

2. Power force

$$F_p = S.p(\alpha)$$

3. Calculation of inertia force

Inertia force of rotating parts:

$$F_{zr}=m_B.r.\omega^2$$

$$F_{zr}=(m_{or}+m_c+m_{khred}.x_r/r).r.\omega^2$$

Inertia force of motion parts:

$$F_{zp}=m_A.a$$

 $F_{zp}=(m_{op}+m_p+m_{pr}+m_{pp}).a$

$$F_{zp} = m_A.r.\omega^2.(\cos\alpha + \lambda.\cos 2\alpha)$$

$$F_{zp} = m_A.r.\omega^2.\cos\alpha + m_A.r.\omega^2.\lambda.\cos 2\alpha$$

$$F_{zp} = F_{zpI} + F_{zpII}$$

Inertia force acting against opposite force.

 F_{zpI} - Inertia force of 1st order.

F_{zpII} -Inertia force of 2nd order.

Lecturer: prof. Ing. Robert Grega, PhD.

Part no: 5L

4. Force in crank mechanism

Finally force on piston (wrist) pin:

$$\overline{F_v} = \overline{F_p} + \overline{F_{zp}}$$

Normal force - eliminated on side of cylinder:

$$N = F_v \cdot tg\beta$$

Force of connecting rod:

$$F_{oj} = \frac{F_v}{\cos\beta}$$

Divided the force of connecting rod on forces crankshaft pin:

$$F_T = F_{oj} \cdot \sin(\alpha + \beta)$$

$$F_R = F_{oj} \cdot \cos(\alpha + \beta)$$

Torque of crankshaft:

$$M_k = F_T.r$$

Part no: 5L

Lecturer: prof. Ing. Robert Grega, PhD.

Graph of torque by one cylinder engine:

Graph of torque by multi cylinder engine:

